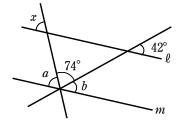

図形の性質⑥ (解答と解説)


1 解答 (1) 37° (2) 64° (3) $\angle x = 84^{\circ}$, $\angle y = 25^{\circ}$ (4) 40°

(1) 右の図のように、点 P を通り ℓ に平行な直線 n をひく。 図で、錯角は等しいから

$$\angle a = 40^{\circ}$$
 $\angle b = 77^{\circ} - 40^{\circ} = 37^{\circ}$
よって $\angle x = \angle b = 37^{\circ}$

(2) 図において、平行線の同位角は等しいから $\angle a = \angle x$ 、 $\angle b = 42^\circ$ $\angle a + \angle b = 180^\circ - 74^\circ = 106^\circ$ であるから $\angle x = 106^\circ - \angle b = 106^\circ - 42^\circ = 64^\circ$

(3) △CDFにおいて、内角と外角の性質から

$$\angle x = 113^{\circ} - 29^{\circ} = 84^{\circ}$$

また、△ABDにおいて、内角と外角の性質から

$$\angle y = 84^{\circ} - 59^{\circ} = 25^{\circ}$$

(4) $\angle x = 360^{\circ} - (55^{\circ} + 80^{\circ} + 95^{\circ} + 90^{\circ})$ = 40°

2 解答 (1) 十四角形 (2) 15本

(1) 内角の和が 2160° である多角形は n 角形であるとすると

$$180^{\circ} \times (n-2) = 2160^{\circ}$$

 $n-2=12$
 $n=14$

- n=1
- (2) 1 つの外角の大きさが 24° である正多角形は正 n 角形 であるとすると

$$360^{\circ} \div n = 24^{\circ}$$

$$n = 15$$

よって, 辺の数は15本

3 解答 略

「仮定」 AO = BO, CO = DO

「結論」 ∠CAO = ∠DBO

[証明] $\triangle AOC$ と $\triangle BOD$ において

$$CO = DO \cdots (2)$$

対頂角は等しいから

$$\angle AOC = \angle BOD \quad \dots \quad 3$$

①, ②, ③より, 2辺とその間の角がそれぞれ等しいから

合同な図形の対応する角は等しいから

$$\angle CAO = \angle DBO$$